靶点说 | CD40

靶点说 | CD40

前言



目前,肿瘤免疫治疗已成为第三代肿瘤治疗中最活跃的研究领域。以PD-1、CTLA-4和PD-L1为靶点的免疫检查点抑制(ICI)疗法在多种癌症的治疗中显示出卓越的效果,并且ICI的免疫疗法随着新的免疫检查点的开发(如TIM-3、LAG-3和TIGIT)而继续扩大。

然而,ICI治疗的主要目的是维持先前已建立的抗肿瘤活性。相比之下,刺激性免疫治疗靶点,如CD40、ICOS、CD27、GITR、OX40和4-1BB则用激动剂来激活免疫,主要集中在免疫反应的早期阶段。这些分子最先起作用的很可能是CD40,因为它在抗原呈递过程中起着关键作用,间接地激活T细胞。


CD40/CD40L的表达



为了获得强大而特异的免疫反应,固有免疫系统和适应性免疫系统需要在多个环节上进行协调。免疫反应的许多关键阶段是由肿瘤坏死因子超家族(TNFSF)的配体及其受体介导的,包括CD40/CD40L。抗原特异性T细胞的有效抗原识别关键取决于特异性抗原呈递细胞(APC)的存在和功能,如B细胞和DC细胞。这些APC通常在细胞表面表达共刺激表面受体CD40(TNFRSF5)。

靶点说 | CD40

CD40是一种48kda大小的Ⅰ型跨膜蛋白,是连接固有免疫和适应性免疫的重要免疫细胞通讯介质。CD40存在于血小板、B细胞和髓系细胞,但也存在于非造血细胞,如内皮细胞、成纤维细胞、平滑肌细胞甚至某些类型的肿瘤细胞。CD40的同源配体是CD154(TNFSF5/CD40L),一种39kda的II型跨膜蛋白。CD40L的表达通常可诱导并局限于造血系统的细胞,如血小板、粒细胞、活化T细胞、活化B细胞和活化自然杀伤细胞(NK)细胞,但内皮细胞和平滑肌细胞也有弱表达。


CD40/CD40L的结构、组成及信号通路



TNF-R-SF信号传导的结构已经比较明确,需要恰当的三维受体聚集和三聚体化。虽然TNF-SF配体天然以三价功能单位存在,但受体通常分散分布在细胞表面。TNF-SF配体以同源三聚体的形式自然地聚集在细胞表面,其中三个受体结合位点位于相邻单体之间的三个完全相同的缝隙处。关键的是,受体组装成功能性的三聚体复合物是通过天然配体单元的结合发生的。这些三聚体TNF-SF配体与在其他细胞表面表达的相应受体的相互作用导致了非常精确的受体聚集。配体对细胞外受体的指令传递给邻近的受体细胞内结构域,然后是细胞内信号复合物的有序组装。TNF-SF配体的三聚体结构和由此产生的受体簇是信号传递到细胞的前提。由于这种特殊的要求,一价和二价的结构在体内通常被证明是极低效的。

靶点说 | CD40

与TNF-R-SF的其他成员一样,CD40是一种膜结合分子,可以通过细胞间直接接触被膜结合配体激活,也可以被溶液中的可溶性配体激活。多种下游分子和细胞反应进程已被证明受到CD40结合的调节。同源配体连接受体可诱导形成空间上明确的三聚体信号复合物,促进TNF受体相关因子(TRAFs)和NFκB激活剂-1(Act1)的招募。信号复合物的特定组成,主要取决于细胞类型,触发各种途径。例如,与TRAF6的结合主要激活JAK/Stat3通路,TRAF1/2诱导MKK/p38/ERK1/2信号传导,Act1在NFkB通路、JNK和PI3K信号传导中具有多种功能,并与TRAF3一起放大MKK/p38/ERK1/2信号。此外,根据特定的环境,CD40结合可以激活“经典”和非典型的NFkB通路。


CD40/CD40L的生物学作用



CD40在单核细胞及其子代巨噬细胞和DC细胞以及B细胞上的表达在发挥免疫细胞的功能中起着重要作用。单核细胞是固有免疫前体细胞,具有很高的可塑性。它们具有分化为多种细胞类型的能力,如巨噬细胞、髓源性抑制细胞(MDSC)和DC细胞。CD40信号是单核细胞成熟过程的重要触发因素,主要驱动分化为M1谱系的巨噬细胞和DC细胞。CD40与DC细胞表面的结合促进了细胞因子和趋化因子的产生,诱导共刺激分子的表达,并促进抗原的交叉呈递。CD40L的主要功能之一是通过激活DC细胞来增强抗原对T细胞的提呈。这一步称为“许可”,通过上调表面蛋白如CD54和CD86,增加DC与T细胞的相互作用,从而激活后者。

B细胞也是CD40L活性的靶点。在胸腺中,T细胞和B细胞之间广泛的串扰使之必须维持表达CD40的B细胞,从而保持自体反应性T细胞对B细胞的阴性选择。B细胞与CD4+T细胞的直接相互作用诱导T细胞表达CD40L,进而保护B细胞不受凋亡的影响。在这个功能中,CD40L通过激活PI3K/Akt提供一个生存信号,使活化的B细胞维持寿命并向浆细胞分化。抗原特异性B细胞通过CD40的稳态增殖和生存机制是通过抗凋亡成员Bcl-2家族的上调来维持的。事实上,CD40/CD40L系统的缺陷与B细胞的抗体类别转换以及细胞超突变的缺陷(hyper-IgM综合征)有关。

靶点说 | CD40

B细胞与活化的表达CD40L的T细胞的相互作用也增加了MHC-II和CD80或CD86等共刺激分子的表达,并诱导B细胞中的Ig类别转换。活化的B细胞迁移到淋巴器官,在那里向T细胞呈递抗原,CD40激活的DC和B细胞通过释放免疫刺激性细胞因子和趋化因子如IL-6、IL-12p70、IFNγ、CXCL10和TNFα来支持免疫应答。此外,CD40活化的B细胞能够通过促进TNFα和IFNγ等细胞因子的分泌来诱导抗原特异性CD8+T细胞。一些研究证明,体外活化的表达CD40的B细胞是完全功能性抗原提呈的B细胞,随后用这些细胞进行过继细胞转移(ACT)治疗可提高抗肿瘤的疗效。


CD40/CD40L与肿瘤免疫



数十年来,CD40/CD40L信号传导同步免疫反应的固有、细胞和体液分支的非凡能力激发了基础和临床研究的灵感。鉴于CD40的一般表达谱和生物学活性,人们已经做了许多尝试来探索CD40/CD40L信号在抗肿瘤免疫中的作用。

CD40激活的DC细胞可用于癌症和传染性疾病(如结核病)的疫苗治疗。CD40信号的另一个有趣结果是表型从“另类活化”的M2型向抗肿瘤或“经典活化”的M1型的转变。这种M1/M2型的命名与肿瘤相关巨噬细胞(TAM)在肿瘤免疫治疗中特别相关。所谓的M1型的“经典活化”巨噬细胞产生于对GM-CSF以及IFNγ和LPS等刺激物的反应,通常被认为具有促炎性免疫反应和抗原交叉呈递的作用。M1型巨噬细胞主要与良好的抗肿瘤免疫反应相关。“另类活化”的M2型巨噬细胞是由于暴露于M-CSF和细胞因子(如IL-4和IL-10)而产生的,并参与组织修复和消除炎症状态。肿瘤相关的M2型被认为是癌症进展和转移的关键驱动因素。肿瘤和浸润性巨噬细胞的紧密相互作用强烈地塑造了肿瘤微环境,从而建立了炎症或促肿瘤的局部条件。有人提出,改善肿瘤内M2/M1谱系的平衡可以通过促进细胞毒性T细胞的浸润和激活来提高抗肿瘤免疫反应。这一点已经在多个模型中进行了描述,例如胰腺癌和小鼠异种移植胶质母细胞瘤模型。巨噬细胞复极化与CD40活化诱导CD206下调和CD54表达增加一致,表明巨噬细胞迁移能力的改变和有效激活。

有趣的是,尽管CD40在许多组织中广泛表达,肿瘤细胞似乎更易受膜结合CD40L诱导的CD40杀伤。在B16黑色素瘤小鼠模型中,DC细胞上表达的膜结合CD40L可直接诱导CD40阳性肿瘤细胞凋亡,而非T细胞依赖的的细胞生长抑制活性则源于CD40刺激的IFNγ激活的巨噬细胞。这一现象的部分原因可能不是CD40信号的直接作用,而是对易感细胞类型死亡受体的二次上调。然而,抗CD40抗体Lucatumumab和dacetuzumab对B细胞恶性肿瘤有一定的临床效果,这可能归因于抗体介导的巨噬细胞吞噬和抗体依赖性细胞毒性(ADCC)的作用。连接CD40后,肿瘤细胞显示出DNA损伤的迹象,分泌促血管生成因子,如VEGF和IL-8,并且通常表现出衰老相关分泌表型(SASP)的状态,这是由于CD40诱导的NFκB通路的激活。


CD40激动剂的开发



基于其独特的受体聚集模式,从TNF-R-SF产生的下游信号依赖于具有非常精确的结构和三维组成的激动剂化合物。由于CD40在抗肿瘤免疫反应中发挥关键作用,诱导CD40信号的各种策略已经被广泛地研究探索。大致可分为基于激动剂抗体的方法或基于CD40L的方法。后者可进一步分为使用CD40L类似物的重组蛋白方法和将CD40L基因导入靶细胞的基因治疗方法。第一个CD40靶向的临床试验始于20多年前。这些初步试验测试了重组CD40L和过度表达CD40L的细胞疫苗。第一个激动剂抗体试验,使用了CP-870893和SGN-40。这些早期临床试验显示了一些令人鼓舞的结果;目前,有7种抗体和4种基于CD40L的方法正在进行临床试验中。

靶点说 | CD40

抗体

抗体最重要的特征是其同源表位的高度特异性。抗体可以特异性地结合到给定蛋白质上的多个独特的表位,包括线性表位和构象表位。重要的是,表位的位置在活性中起着至关重要的作用。这最初是通过显示具有不同表位的抗体在结合后产生不同的CD40信号级联来证明的。其中抗人CD40抗体的刺激活性随着表位变得更接近细胞膜而降低。

有趣的是,人们推测表位位置的重要性实际上与Fc域的可及性有关。具体地说,当抗体的Fc结构域与细胞表面的远端结合时,Fcγ受体(FcγR)可接近,但与膜结合较近的抗体的Fc结构域将无法最佳地与FcγR结合。这突出了抗原结合位点和Fc结构域在活性中发挥作用的重要性。由于其双价性质,除非交联,否则抗CD40抗体不会提供显著疗效所需的聚集能力。事实上,治疗性抗体,尤其是抗CD40抗体,通常依赖于通过Fcγ受体(FcγR)的二次交联来获得生物活性。这些Fc/FcR相互作用产生其他的反应。例如,Fc区域介导靶细胞的CDC或ADCC作用。事实上,ADCC是抗CD40抗体Lucatumab在治疗慢性淋巴细胞性淋巴瘤以及其他用于癌症治疗的抗体,如曲妥珠单抗(anti-HER2)、利妥昔单抗(rituximab,抗CD20)和伐利仑单抗(Varliumab,anti-CD27)活性的根本原因。这意味着抗体的两端在发挥生物学功能时都具有重要的作用。就抗CD40抗体而言,这也意味着它们具有混合的作用模式。当讨论抗CD40抗体的治疗指标,比较疗效和安全性时,这一点变得尤为重要。

早期抗CD40抗体缺乏显著的临床活性促使人们对其进行了许多改进。目前,七种独特的抗CD40抗体正在进行临床试验,包括CP-870893,并且最近发表了一些新的结果,这些新的研究集中在新的表位、新的Fc区域设计,以及联合治疗,以改善以往观察到的有限的临床疗效。

基于CD40L的细胞和基因治疗

最早的CD40靶向方法涉及在不同细胞群中构建CD40L的过度表达。目前,可进一步分为两种主要方法:表达CD40L的细胞疫苗和使用溶瘤病毒等载体系统的CD40L特异性基因治疗。另外,由于树突状细胞是CD40L和抗原交叉呈递的主要靶细胞之一,提高这种细胞类型的疗效和敏感性的一种方法是用CD40转导并随后作为改进的疫苗载体使用。一种体内激活诱导性CD40的自体树突状细胞疫苗已经用于晚期前列腺癌的临床试验。

靶点说 | CD40

之前使用这些方法的临床试验表现出有限的临床活性。最近的一些进展,包括正在进行的临床试验和发表的文章,已经证明了这些方法的潜力。例如,在临床前模型中,表达CD40L的嵌合抗原受体(CAR)T细胞显示出增强的抗肿瘤活性。这种方法结合了CAR-T细胞靶向的特异性和基于CD40L的共刺激,使其成为“细胞双特异性”。显然,研究结果表明,细胞疫苗并不是唯一一种可以从靶向CD40中获益的过继细胞疗法(ACT)。CD40L的递送方式和模式的进一步发展也显示出了一些前景。

基于CD40L的重组蛋白

最后一种方法是直接注射可溶性重组CD40L,这些蛋白是内源性CD40L的分子类似物,通过受体结合域与CD40特异性地相互作用。这已经通过使用纯化的CD40L、稳定的三价/三聚体形式和最近的六价/六聚体形式的CD40L来实现。如前所述,CD40需要正确地三聚体以传递有效的信号。虽然纯化的CD40L在溶液中容易三聚,但CD40L的方法并不是很成功。然而,稳定的三聚体形式,如异亮氨酸拉链CD40L形式,在与IL-6阻断剂结合时表现出一些活性。

最近的研究结果表明,通过TNF-R-SF传输信号的高阶六价途径更为优越。六价激动剂包含一个共刺激TNF-SF配体家族,这些配体特异性地结合靶细胞上的同源受体,并诱导六个受体链以空间上明确的方式聚集。特定化合物,如HERA-CD40L和MEDI5083(NCT03089645)是由三价的单链CD40L受体结合域(scCD40L-RBD)组成的融合蛋白,与人IgG连接,从而产生六价分子。

靶点说 | CD40

HERA-CD40L具有Fc沉默的IgG1,在缺乏FcγR介导的交联的情况下,可以有效地使CD40表达细胞的受体激活。用HERA-CD40L处理B细胞后,NFκB信号被强烈激活,单核细胞经HERA-CD40L处理后,促进了M1型的分化和M2型巨噬细胞向M1型的再极化。用HERA-CD40L处理T和B细胞体外共培养后,T细胞的抗肿瘤活性增强,这依赖于与B细胞的直接相互作用。在体内,小鼠HERA-CD40L替代物刺激抗原特异性T细胞克隆性扩增,并在CD40阴性同基因MC38-CEA小鼠结直肠癌模型中显示出单药抗肿瘤活性。

靶点说 | CD40

尽管重组CD40L是最早用于靶向CD40的技术之一,但这种方法的前景最近才显现。由于这些化合物是真正的激动剂,不需要FcγR介导的交联,因此与其他方法相比,它们应该具有更高的安全性。使用三价、四价和六价形式的新的分子正在探索。但正如我们所讨论的,通过TNF-R-SF的信号需要小心控制,太少的聚集导致没有信号,而太多的聚集则会导致过度刺激。


靶向CD40的双特异性方法



双特异性CD40/靶标的概念包括许多不同的方法,例如结合CD40L等附加因子生成表达CAR的增强型CAR-T细胞(“细胞双特异性”),抗体识别顺式或反式两个不同的表位,甚至是一个靶向结构域和一个功能域结合在一个分子中的双特异性抗体。由于CD40的表达谱模糊不清,因此双特异性CD40激动剂的开发具有挑战性,尽管如此,已有人尝试使用CD40/间皮素双特异性结构(ABBV-428,NCT02955251),CD40/HER2双特异性结构和所谓的duokines。其它的CD40双特异性分子也在开发中,包括CEA和其他作为肿瘤靶向抗原。


与其它疗法的联合治疗



鉴于CD40的一般表达谱和生物活性,CD40激动剂与其他治疗方案的联合应用已在临床前模型中进行了研究。CD40靶向治疗与其他免疫调节剂或检查点抑制剂的使用在各种癌症模型中显示出巨大的潜力。例如,使用激动剂抗CD40抗体结合化疗或激酶抑制剂的临床前研究已显示出有良好的前景。

放疗(RT)是癌症治疗的支柱之一,在整个治疗过程中,高达70%的癌症患者接受放疗。RT的一个预期作用是释放肿瘤抗原并建立局部促炎的TME。因此,应用CD40激动剂来增强RT诱导的疫苗接种效果已经被集中研究,并在多个临床前模型中证明了其有效性。最终,TME的调节旨在激活并引导抗肿瘤细胞毒性T细胞,这一点可以通过PD-1、PD-L1或CTLA-4等免疫检查点抑制剂得到进一步支持。临床前模型中已描述了CD40抗体与检查点抑制剂的几种组合,尤其是抗PD-L1和CTLA-4抗体,最近在一项非对照I期试验中显示了一些临床活性的证据。

此外,在小鼠胶质瘤模型和其他指标中,结合肿瘤疫苗接种策略,已证明CD40信号具有治疗潜力,提高了过继细胞转移(ACT)治疗小鼠B16黑色素瘤模型的疗效。最后,除了前面提到的表达CD40L的CAR-T细胞外,还有一些证据表明,CAR-T细胞和抗CD40激动剂联合治疗可提高胰腺癌小鼠模型的抗肿瘤免疫反应。尽管这些初步结果令人鼓舞,但CD40靶向联合治疗的真正潜力,还必须经过恰当的随机对照临床研究的检验。


小结



增强抗肿瘤免疫应答的策略是肿瘤学最有希望的新进展之一,而TNF-R-SF成员,如CD40,是其中重要的靶点。由于产生高效TNF-R-SF信号的独特要求,激动剂分子必须产生非常精确的受体结构和三维结构。虽然已经探索了诱导CD40信号的各种策略,但是20年来有限的临床成功表明需要探索新的方法,这种信号通路激动剂的真正威力尚未在临床开发中充分释放出来。目前CD40激动剂临床疗效有限的原因归咎于抗体的结构和功能特性,包括每个分子只有两个靶结合位点,不适合刺激TNF-R-SF。由于这一信号通路具有广泛的靶向性,因此也可与其他药物和疗法联合应用。相信不久的将来会产生更多令人鼓舞的临床数据,提高治疗效果,并拓宽更多癌症患者的治疗选择。


参考文献:

Concepts for agonistic targeting of CD40 in immuno-oncology. Hum Vaccin Immunother. 2020;16(2):377-387.


靶点说 | CD40

版权声明/免责声明

本文为授权转载文章,仅代表作者观点,版权归作者

仅供感兴趣的个人谨慎参考,非商用,非医用、非投资用。

欢迎朋友们批评指正!衷心感谢!

文中图片、视频为授权正版作品,或来自微信公共图片库,或取自网络

根据CC0协议使用,版权归拥有者。

任何问题,请与我们联系(电话:13651980212。微信:27674131。邮箱:contact@drugtimes.cn)。衷心感谢!

靶点说 | CD40

推荐阅读

靶点说 | CD40
靶点说 | CD40
靶点说 | CD40

靶点说 | CD40

靶点说 | CD40点击这里,与~20万同药们喜相逢!

本篇文章来源于微信公众号:药时代

发布者:药时代,转载请首先联系contact@drugtimes.cn获得授权

分享本页
返回顶部