参考文献:
[1] Guo C, Manjili M H, Subjeck J R, et al. Therapeutic cancer vaccines: past, present, and future[J]. Adv Cancer Res, 2013, 119: 421-475. DOI: 10.1016/B978-0-12-407190-2.00007-1.
[2]Tejeda-Mansir A, Garcia-Rendón A, Guerrero-Germán P. Plasmid-DNA lipid and polymeric nanovaccines: a new strategic in vaccines development[J]. Biotechnol Genet Eng Rev, 2019, 35(1): 46-68.
[3] Alfagih I M, Aldosari B, AlQuadeib B, et al. Nanoparticles as adjuvants and nanodelivery systems for mRNA-based vaccines[J]. Pharmaceutics, 2020, 13(1): 45. DOI: 10.3390/ pharmaceutics13010045.
[4] Maruggi G, Zhang C L, Li J W, et al. mRNA as a transformative technology for vaccine development to control infectious diseases[J]. Mol Ther, 2019, 27(4): 757-772.
[5] Polack F P, Thomas S J, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine[J]. N Engl J Med, 2020, 383(27): 2603-2615.
[6] Wang F, Kream R M, Stefano G B. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development[J]. Med Sci Monit, 2020, 26: e924700. DOI: 10.12659/MSM.924700.
[7] McKay P F, Hu K, Blakney A K, et al. Self-amplifying RNA SARSCoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice[J]. Nat Commun, 2020, 11(1): 3523. DOI: 10.1038/s41467-020-17409-9.
[8] Zhang N N, Li X F, Deng Y Q, et al. A thermostable mRNA vaccine against COVID-19[J]. Cell, 2020, 182(5): 1271-1283.e16.
[9] Schlich M, Palomba R, Costabile G, et al. Cytosolic delivery of nucleic acids: the case of ionizable lipid nanoparticles[J]. Bioeng Transl Med, 2021, 6(2): e10213. DOI: 10.1002/btm2.10213.
[10] Zhang R, Tang L, Tian Y M, et al. DP7-C-modified liposomes enhance immune responses and the antitumor effect of a neoantigenbased mRNA vaccine[J]. J Control Release, 2020, 328: 210-221. DOI: 10.1016/j.jconrel.2020.08.023.
[11] Liu L N, Wang Y H, Miao L, et al. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer[J]. Mol Ther, 2018, 26(1): 45-55.
[12] Wang F, Xiao W, Elbahnasawy M A, et al. Optimization of the linker length of mannose-cholesterol conjugates for enhanced mRNA delivery to dendritic cells by liposomes[J]. Front Pharmacol, 2018, 9: 980. DOI: 10.3389/fphar.2018.00980.
[13] Brito L A, Chan M, Shaw C A, et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines[J]. Mol Ther, 2014, 22(12): 2118-2129.
[14] Bogers W M, Oostermeijer H, Mooij P, et al. Potent immune responses in rhesus macaques induced by nonviral delivery of a selfamplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion[J]. J Infect Dis, 2015, 211(6): 947-955.
[15] Samsa M M, Dupuy L C, Beard C W, et al. Self-amplifying RNA vaccines for venezuelan equine encephalitis virus induce robust protective immunogenicity in mice[J]. Mol Ther, 2019, 27(4): 850-865.
[16] Luisi K, Morabito K M, Burgomaster K E, et al. Development of a potent Zika virus vaccine using self-amplifying messenger RNA[J]. Sci Adv, 2020, 6(32): eaba5068. DOI: 10.1126/sciadv.aba5068.
[17] Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: current perspectives[J]. Adv Drug Deliv Rev, 2020, 154/155: 37-63. DOI: 10.1016/j.addr.2020.06.002.
[18] Lutz J, Lazzaro S, Habbeddine M, et al. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines[J]. NPJ Vaccines, 2017, 2: 29. DOI: 10.1038/s41541-017-0032-6.
[19] Pardi N, Tuyishime S, Muramatsu H, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes[J]. J Control Release, 2015, 217: 345-351. DOI: 10.1016/j.jconrel.2015.08.007.
[20] Liang F, Lindgren G, Lin A, et al. Efficient targeting and activation of antigen presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques[J]. Mol Ther, 2017, 25(12): 2635- 2647.
[21] Oberli M A, Reichmuth A M, Dorkin J R, et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy[J]. Nano Lett, 2017, 17(3): 1326-1335.
[22] Miao L, Li L X, Huang Y X, et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation[J]. Nat Biotechnol, 2019, 37(10): 1174-1185.
[23] Pardi N, Hogan M J, Porter F W, et al. mRNA vaccines -a new era in vaccinology[J]. Nat Rev Drug Discov, 2018, 17(4): 261-279.
[24] Pardi N, Hogan M J, Pelc R S, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination[J]. Nature, 2017, 543(7644): 248-251.
[25] Khurana A, Allawadhi P, Khurana I, et al. Role of nanotechnology behind the success of mRNA vaccines for COVID-19[J]. Nano Today, 2021, 38: 101142. DOI: 10.1016/j.nantod.2021.101142.
[26] Kim J, Eygeris Y, Gupta M, et al. Self-assembled mRNAvaccines[J]. Adv Drug Deliv Rev, 2021, 170: 83-112. DOI: 10.1016/ j.addr.2020.12.014.
[27] Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy[J]. Mol Cancer, 2021, 20(1): 41. DOI: 10.1186/s12943-021-01335-5.
[28] Karpenko L I, Rudometov A P, Sharabrin S V, et al. Delivery of mRNA vaccine against SARS-CoV-2 using a polyglucin: spermidine conjugate[J]. Vaccines, 2021, 9(2): 76. DOI: 10.3390/ vaccines9020076.
[29] Chahal J S, Khan O F, Cooper C L, et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose[J]. Proc Natl Acad Sci USA, 2016, 113(29): e4133-e4142.
[30] Li M, Li Y, Peng K, et al. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses[J]. Acta Biomater, 2017, 64: 237-248. DOI: 10.1016/j.actbio.2017.10.019.
[31] Rahman M, Alharbi K S, Alruwaili N K, et al. Nucleic acid-loaded lipid-polymer nanohybrids as novel nanotherapeutics in anticancer therapy[J]. Expert Opin Drug Deliv, 2020, 17(6): 805-816.
[32] Ayad C, Libeau P, Lacroix-Gimon C, et al. LipoParticles: lipid-coated PLA nanoparticles enhanced in vitro mRNA transfection compared to liposomes[J]. Pharmaceutics, 2021, 13(3): 377. DOI: 10.3390/ pharmaceutics13030377.
[33] Yasar H, Biehl A, de Rossi C, et al. Kinetics of mRNA delivery and protein translation in dendritic cells using lipid-coated PLGA nanoparticles[J]. J Nanobiotechnology, 2018, 16(1): 72. DOI: 10.1186/s12951-018-0401-y.
[34] Siewert C D, Haas H, Cornet V, et al. Hybrid biopolymer and lipid nanoparticles with improved transfection efficacy for mRNA[J]. Cells, 2020, 9(9): 2034. DOI: 10.3390/cells9092034.
[35] Le Moignic A, Malard V, Benvegnu T, et al. Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells[J]. J Control Release, 2018, 278: 110-121. DOI: 10.1016/j.jconrel.2018.03.035. [36] Ho W, Gao M, Li F, et al. Next-generation vaccines: nanoparticlemediated DNA and mRNA delivery[J]. Adv Healthc Mater, 2021, 10(8): e2001812. DOI: 10.1002/adhm.202001812.
[37] Udhayakumar V K, de Beuckelaer A, McCaffrey J, et al. Argininerich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide[J]. Adv Healthc Mater, 2017, 6(13): 1601412. DOI: 10.1002/adhm.201601412.
[38] Bell G D, Yang Y, Leung E, et al. mRNA transfection by a Xentryprotamine cell-penetrating peptide is enhanced by TLR antagonist E6446[J]. PLoS One, 2018, 13(7): e0201464. DOI: 10.1371/journal. pone.0201464.
[39] Coolen A L, Lacroix C, Mercier-Gouy P, et al. Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNAbased vaccine expression in dendritic cells triggering their activation[J]. Biomaterials, 2019, 195: 23-37. DOI: 10.1016/ j.biomaterials.2018.12.019.
[40] Zhang W, Liu Y, Min Chin J, et al. Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination[J]. Eur J Pharm Biopharm, 2021, 163: 179-187. DOI: 10.1016/j.ejpb.2021.03.011.
[41] Yin Y, Li X, Ma H, et al. In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy[J]. Nano Lett, 2021, 21(5): 2224-2231.
[42] Li J M, Sun Y L, Jia T T, et al. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer[J]. Int J Cancer, 2014, 134(7): 1683-1694.